Electronic Structure of Few-Layer Graphene: Experimental Demonstration of Strong Dependence on Stacking Sequence
نویسندگان
چکیده
منابع مشابه
Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence.
The electronic structure of few-layer graphene (FLG) samples with crystalline order was investigated experimentally by infrared absorption spectroscopy for photon energies ranging from 0.2-1 eV. Distinct optical conductivity spectra were observed for different samples having precisely the same number of layers. The different spectra arise from the existence of two stable polytypes of FLG, namel...
متن کاملAtomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer
The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Diff...
متن کاملElectronic structure of few-layer epitaxial graphene on Ru(0001).
The electronic structure of epitaxial monolayer, bilayer, and trilayer graphene on Ru(0001) was determined by selected-area angle-resolved photoelectron spectroscopy (micro-ARPES). Micro-ARPES band maps provide evidence for a strong electronic coupling between monolayer graphene and the adjacent metal, which causes the complete disruption of the graphene pi-bands near the Fermi energy. However,...
متن کاملImaging stacking order in few-layer graphene.
Few-layer graphene (FLG) has been predicted to exist in various crystallographic stacking sequences, which can strongly influence the material's electronic properties. We demonstrate an accurate and efficient method to characterize stacking order in FLG using the distinctive features of the Raman 2D-mode. Raman imaging allows us to visualize directly the spatial distribution of Bernal (ABA) and...
متن کاملStacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging
In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2010
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.104.176404